New Oxidative Tools for the Functionalization of the Cephalostatin North 1 Hemisphere†

ORGANIC LETTERS 2003 Vol. 5, No. 13 ²²⁴⁷-**²²⁵⁰**

Jong Seok Lee and Philip L. Fuchs*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

pfuchs@purdue.edu

Received March 30, 2003

ABSTRACT

Dimethyldioxirane (DMDO) C−**H oxidation of ketone 17 to hemiketal 18 (82%), bis-dehydration to vinyl ether 21 (77%), and DMDO again provides C-23 axial alcohol 23 (99%). Routine processing, including a double-stereoselective Sharpless AD reaction (de >98%), gives alcohols 7 and 32. C-23 deoxy substrate 7 undergoes Suarez hypoiodite oxidative cyclization to (natural)** *â* **spiroketal 34, but compound 32, bearing a C-23 silyl ether, generates unnatural spiroketal 33.**

The cephalostatins¹ and ritterazines² comprise a family of 45 structurally unique marine natural products that display extreme cytotoxicity against human tumors (∼1 nM mean $GI₅₀'s$ in the 2-day NCI-60 screen and 10^{-14} M $GI₅₀'s$ in 3-day tests in the Purdue minipanel).³ The total syntheses of cephalostatin 1 **2** and cephalostatin 7 as well as many analogues have been reported by others⁴ and us,⁵ but chemical evidence for the site(s) of reactivity and the mechanism of action of the bissteroidal pyrazines remain unknown and *no scaleable synthesis for such testing has been achieved.* Our recent "second-generation" synthesis of the C-23′ deoxy South 1 hexacyclic spiroketal **Do-2** has substantially ameliorated the material supply problem with the South 1 hemisphere (12 operations, 23% overall yield from hecogenin acetate1),⁶ but access to the North segment (and the South 7 hemisphere **3**) remained impractical, standing at ∼34 operations.

As more extensively discussed in our previous publication, 6 we are now pursuing a strategy which retains all 27 [†] Cephalostatin Support Studies. 24. Oxidations. 2. For previous papers carbon atoms of hecogenin acetate **1** and employs specific

in these series, see ref 6 and: Lee, S. M.; Fuchs, P. L. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 13978-13979.

⁽¹⁾ Pettit, G. R.; Tan, R.; Xu, J.-P.; Ichihara, Y.; Williams, M. D.; Boyd, M. R. *J. Nat. Prod*. **1998**, *61*, 953 and references therein.

⁽²⁾ Fukuzawa, S.; Matsunaga, S.; Fusetani, N. *J. Org. Chem.* **1997**, *62*, 4484 and references therein.

⁽³⁾ LaCour, T. G.; Guo, C.; Ma, S.; Jeong, J. U.; Boyd, M. R.; Matsunaga, S.; Fusetani, N.; Fuchs, P. L. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2587 and references therein. Leukemia, renal, and CNS lines are particularly sensitive to cephalostain 1.

⁽⁴⁾ Heathcock, C. H.; Smith, S. C. *J. Org. Chem*. **1994**, *59*, 6828 and references therein. Jautelat, R.; Müller-Fahrnow, A.; Winterfeldt, E. *Chem. Eur. J.* **1999**, *5*, 1226. Basler, S.; Brunck, A.; Jautelat, R.; Winterfeldt, E. *Hel*V*. Chim. Acta,* **²⁰⁰⁰**, *⁸³*, 1854 and references therein.

⁽⁵⁾ LaCour, T. G.; Guo, C.; Boyd, M. R.; Fuchs, P. L. *Org. Lett*. **2000**, *2*, 33.

⁽⁶⁾ Li, W.; LaCour, T. G.; Fuchs, P. L. *J. Am. Chem. Soc.* **2002**, *124*, 4548.

oxidation reactions to introduce common features found in both cephalostatin hemispheres (Figure 1).

Our revised approach to the North 1 and South 7 segments is based upon the Suarez cyclization we employed for the synthesis and structure correction of Ritterazine M.7 A related model study has recently appeared from the Suarez group.8 We have found that it is essential to define the "gestalt" effects of the entire steroid upon chemistry occurring at a supposedly remote site. In this light, comparison of the Suarez study 8 with our current investigation is particularly instructive.

Our study began with compound **4**, ⁹ having C12 and C14-15 in the *required oxidation state*. Reductive cleavage of the spiroketal gave alcohol **5**, which was converted to olefin **6** through the intermediate iodide (Scheme 1).

The Suarez group started with compound **10** having C12 and C14 in the fully reduced state. This material was converted to the C23 ketone via the nitroimine.¹⁰ Similar to previous cases, reduction of the spiroketal C-23 ketone was highly selective (5:95) for the (unnatural) equatorial alcohol, although a 63:37 ratio favoring the axial alcohol could be obtained using L-Selectride. Reductive cleavage to **11** followed by protecting group manipulation and elimination via the nitroselenoxide afforded silyl ether-olefin **¹²** (Scheme 1).

The parallel studies next examined osmylation of olefins **6** and **12**, respectively. The Purdue group employed double stereoselection via catalytic asymmetric dihydroxylation of **6**, which delivered a pair of spiroketals in ∼6:1 selectivity *both bearing the 25S configuration*. 7,11 In comparison, stoichiometric osmylation of **12** gave a 1:2 mixture favoring the unnatural 25*R* stereochemistry.8

Application of the Suarez reaction to the C-23,26-diprotected diol mixture **13** generated a 28/72 mixture of the two 5/5 ring spiroketals **14/15** in 83% yield. In stark contrast, similar treatment of the C-26 protected substrate **7** generated a single diastereomeric spiroketal **8**, which was shown to have the desired 22-natural stereochemistry (Scheme 2).

These and other experiments (vide infra) prove that a C14–15 olefin is required to achieve stereospecific asym*metric dihydroxylation at C25,26.*

The new Purdue synthesis begins with our improved transformation of hecogenin acetate **16** to *â*-hydroxyketone 17 in a one-pot 94% yield.⁹ Dimethyldioxirane has been effectively used for the oxidation of tertiary C-H bonds in steroids,12 and application of this reagent to spiroketal **17** smoothly provides diol 18 in 82% yield (15.7 g) .¹⁴ Initial experiments to effect bis-dehydration of **18** were quite unrewarding. For example, treatment of hemiketal **18** with 2.1 equiv of BF_3 · OEt_2 in CH_2Cl_2 from -10 to $+25$ °C for 18 h gave dienone **19** in 27% yield. Attempts to intercept

⁽⁷⁾ Lee, S. M.; Fuchs, P. L. *Org. Lett.* **2002**, *4*, 317. Lee, S. M.; LaCour, T. G.; Lantrip, D.; Fuchs, P. L. *Org. Lett.* **2002**, *4*, 313.

⁽⁸⁾ Betancor, C.; Freire, R.; Perez-Martin, I.; Prange, T.; Suarez, E. *Org. Lett*. **2002**, *4*, 1295.

⁽⁹⁾ LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. *J. Am. Chem. Soc.* **1998**, *120*, 692.

⁽¹⁰⁾ Barton, D. H. R.; Sammes, P. G.; Taylor, M. V.; Werstiuk, E. *J. Chem. Soc.* **1970**, 1977. Gonzalez, A. G.; Freire, R.; Garcia-Estrada, M. G.; Salazar, J. A.; Suarez, E. *Anal. Quim.* **1971**, *67*, 903. Gonzalez, A. G.; Freire, R.; Garcia-Estrada, M. G.; Salazar, J. A.; Suarez, E. *Tetrahedron* **1972**, *28*, 1289.

⁽¹¹⁾ Originally this mixture was misassigned as a mixture of stereoisomers at $C25$,⁷ but the minor isomer is actually the $C22\beta$ spiroketal and can be equilibrated quantitatively to the natural $C22\alpha$ configuration under acidic conditions (Lee, S. M. Unpublished results).

⁽¹²⁾ Adam, W.; Bialas, J.; Hadjiarapoglou, L. *Chem. Ber.* **1991**, *124*, 124. Iida, T.; Yamaguchi, T.; Nakamori, R.; Hikosaka, M.; Mano, N.; Goto, J.; Nambara, T. *J. Chem. Soc., Perkin Trans. 1* **2001**, 2229. Bovicelli, P.; Lupattelli, P.; Fiorini, V.; Mincione, E. *Tetrahedron Lett.* **1993**, *34*, 6103. Dixon, J. T.; Holzapfel, C. W.; van Heerden, F. R. *Synth. Commun.* **1993**, *23*, 135. Bovicelli, P.; Lupattelli, P.; Fiorini, V.; Mincione, E. *Tetrahedron Lett.* **1993**, *34*, 6103. Bovicelli, P.; Lupattelli, P.; Fracassi, D.; Mincione, E. *Tetrahedron Lett.* **1994**, *35*, 935.

⁽¹³⁾ Ley, S. V.; Anthony, N. J.; Armstrong, A.; Brasca, M. G.; Clarke, T.; Culshaw, D.; Greck, C.; Grice, P.; Jones, A. B.; Lygo, B.; Madin, A.; Sheppard, R. N.; Slawin, A. M. Z.; Williams, D. J. *Tetrahedron* **1989**, *45*, 7161. Ley, S. V.; Anderson, J. C.; Blaney, W. M.; Jones, P. S.; Lidert, Z.; Morgan, E. D.; Robinson, N. G.; Santafianos, D.; Simmonds, M. S. J.; Toogood, P. L. *Tetrahedron* **1989**, *45*, 5175. Bernsmann, H.; Hungerhoff, B.; Fechner, R.; Fröhlich, R.; Metz, P. *Tetrahedron Lett.* **2000**, 41, 1721. (14) X-ray structural information relating to compounds **18**, **20**, and **26** can be obtained from the Cambridge Crystallographic Data Centre.

the putative D-ring enone by adding triethylsilane to the above conditions provided a 75:11 mixture of **19** and isomeric spiroketal 20 in 86% yield.¹⁴ Under many conditions (see the Supporting Information), **20** is the exclusive product and yields in excess of 95% may be obtained.

After much experimentation, it was discovered that reaction of diol **18** with 4 equiv of thionyl chloride and 20 equiv of pyridine in toluene at -50 °C afforded the long-sought crystalline vinyl ether **21** in 77% yield. This labile material was immediately subjected to DMDO oxidation and underwent quantitative oxidative cyclization to the requisite C-23 axial alcohol **23**, presumably via the intermediacy of nonobserved epoxide **22** (Scheme 3).

a Key: (a) (i) *hv*, CH₂Cl₂, (ii) evap, add 3:1 HOAc/H₂O, (iii) add H₂CrO₄; (b) DMDO (750 mL), CH₂Cl₂ (50 mL), 25 °C, 7 days; (c) TMSCl (1 equiv), NaI (1 equiv), CH₃CN, 30 min, 25 °C, or DMF, 85 °C, or AcOH/CH₂Cl₂ (1:3), 25 °C, 8 h, 99%; (d) 4 equiv of SOCl₂, 20 equiv of pyridine, toluene, -50 °C, 40 min; (e) DMDO, -⁵⁰ °C, 30 min, >99%.

The synthetic plan envisaged dehydration of **23** to dienyl ether **27** in preparation for introduction of the C-17 hydroxyl group via hydroboration. The first try involved conversion of hemiacetal **23** to sulfide **24** in 71% yield using standard conditions for this transformation.13 We next examined introduction of the selenide moiety in hopes of generating a selenoxide leaving group which might eliminate to **27** under milder conditions. Treatment of lactol **23** with 1.1 equiv of phenylselenol in the presence of boron trifluoride etherate gave the expected selenide **25** in 43% yield along with everincreasing amounts of **26**, the product of reductive cleavage, in addition to an equivalent amount of diphenyl diselenide. Compound **26** and diphenyl diselenide could be obtained in 83% yield by running the reaction of **23** with 2.5 equiv of selenol with irradiation by a sun lamp. Compound **26** has been verified by X-ray,¹⁴ thereby also securing the structure of alcohol **23**.

Oxidation of **24** or **25** with 1 equiv of *m*-CPBA provided neither the expected sulfoxide, selenoxide, nor diene **27**. Presumably, the putative allylic sulf- (selen-) oxide suffered spiroketal-assisted ionization to the enone-oxonium ion followed by pinacol rearrangement of the C-23 hydride to the C-22 position, thereby yielding ketone **28** in ∼60% yield (Scheme 4).

a Key: cat. BF_3 OEt₂ (5 mol %), PhSH (1.5 equiv), CH₂Cl₂, -40 $°C$, 30 min; (b) dark, 1.1 equiv of PhSeH, cat. BF₃ \cdot OEt₂ (10 mol) %), CH₂Cl₂, -30 to -10 °C, 20 min; (c) 2.5 equiv of PhSeH, cat. BF_3 **·**OEt₂ (10 mol %), CH₂Cl₂, -30 °C, 2 h, sun lamp; (d) 1.1 equiv of PhSeH, sun lamp, 2 h, -30 to -20 °C; (e) 70% *m*-CPBA (1.0 equiv), CH_2Cl_2 , 25 °C, 10 min.

After an unsuccessful survey of methods designed to use the axial C-23 alcohol to axially oxygenate the C-25 position (see the Supporting Information), we returned to the strategy we had previously applied in the ritterazine M synthesis.⁷

Conversion of the diol (not shown) from the Sharpless AD reaction of olefin **30** gives a high yield of C-26 acetate **31**(Scheme 5). Presumably, this interesting transformation

^a Key: (i) 1.2 equiv of NaBH₄, MeOH, CH₂Cl₂, -78 °C, 9 h, $\alpha/\beta = 1:20$, (ii) 3 equiv of Ac₂O, 12 equiv of pyridine, cat. DMAP, CH_2Cl_2 , rt, 8 h, 99%; (b) 9 equiv of BF_3 OEt_2 , 9 equiv of Et_3SiH , CH₂Cl₂, 0 °C to rt, 36 h; (c) (i) 2.5 equiv of PPh₃, 3 equiv of I_2 , 5 equiv of imidazole, Et_2O , CH_3CN , 0 °C to rt, 2.5 h, (ii) DBU, CH₃CN, reflux, 3 h, 83% in two steps; (d) 3 equiv of $K_3Fe(CN)_6$, 3 equiv of K_2CO_3 , 0.1 equiv of $(DHQ)_2$ ·PHAL, 0.014 equiv of K_2OsO_4 \cdot 2H₂O, tBuOH, H₂O, 0 °C, 17 h; (e) K_2CO_3 , THF, H₂O, rt, 3 h, 72% in two steps, $C25-S/-R = 7.8:1$; (f) 1.7 equiv of TBDMSOTf, 3 equiv of TEA, CH₂Cl₂, 0 °C, 4 h, 78%; (g) 2.6 equiv of PhI(OAc)₂, 2.2 equiv of I₂, UV lamp (300 nm), cyclohexane, 40 °C, 2 h; (h) HCl gas, CH_2Cl_2 , rt, 8 h, 99%.

involves sequential double transacylation from C-23. Substrate **32** suffers kinetic Suarez cyclization conditions; now the unnatural isomer **33** is favored over **34** *by a 12.5:1 ratio.* Thermodynamic equilibration of these two isomers demonstrates that the minor isomer 34 *can be completely converted to the unnatural spiroketal 33*.

The route for completing the cephalostatin North 1 hemisphere is now becoming fairly well defined after integrating

the current work with our earlier efforts. We have previously demonstrated that C-23 deoxy diol **35** thermodynamically cyclizes to a ∼1:1 mixture of the natural South 7 spiroacetal **36** and the 22-epi, 23-deoxy North 1 spiroacetal **37** when treated with catalytic camphor sulfonic acid, a result predicted by molecular mechanics modeling calculations.15 However, the "real", oxygenated substrate **38** is very unreactive because of the combined steric and electronic deactivation of the enol ether moiety imparted by the C-23 silyl ether. Application of forcing conditions on **38** only serves to generate a plethora of products, probably via the Ferrier pathway. This problem was solved in our (lengthy) first-generation synthesis via a two-step bromocyclization/reduction strategy.16 Kinetic bromination from the α -face yields oxonium ion 39, which suffers stereospecific cyclization to **40**. Subsequent chromium(II)-mediated reductive cleavage then provides a ∼10:1 separable mixture from which C-20 methyl compound **41** can be obtained in 70% yield (Figure 2).

The results previously discussed above can now be contrasted with the findings of this paper. While C-17, C23 bis-deoxy compound **7** smoothly affords spiroacetal **8** bearing the C-22 natural configuration via the Suarez hypoiodite reaction, it is clear that *the C-23 silyl ether is a dominant negative control element*, since alcohol 32 completely favors the unnaturally configured spiroacetal **33** under thermodynamic conditions. Thus, the key question remaining to be tested is whether **42**, bearing the requisite C-17 oxygen functionality *and* a C -20 α -methyl will be cyclize to natural spiroketal **43** or its unwanted isomer **44**. Put another way, is geminal substitution required at C-20 (intermediate **39)** to ensure formation of β -face spiroketal **40**, or can oxonium intermediate 42 bearing a C-17 silyl ether and an α -face C-20 methyl moiety overcome the deleterious effect of the C-23 silyl ether (Figure 7)?

Acknowledgment. We thank the National Institutes of Health (CA 60548) for funding. Arlene Rothwell provided the MS data.

Supporting Information Available: Experimental procedures and copies of ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034551G

⁽¹⁵⁾ Jeong, J. U.; Fuchs, P. L. *Tetrahedron Lett.* **1995**, *36*, 2431.

⁽¹⁶⁾ Kim, S.; Sutton, S. C.; Fuchs, P. L. *Tetrahedron Lett.* **1995**, *36*, 2427; see also ref 9.